
Tachyon User’s Guide

UNDER DEVELOPMENT

John E. Stone
E-Mail johns@megapixel.com

Abstract

This document contains information on using Tachyon to create ray
traced images, and animations. Information on the parallel raytracing
engine and its use as an external rendering library is contained in
other documents. Corrections and suggestions should be mailed to the
author at johns@megapixel.com

1

Contents

1 Introduction 3
1.1 Tachyon Feature List . 3

2 Compiling Tachyon From Source Code 3

3 Running Tachyon 5
3.1 Command line parameters . 5
3.2 Tips for running MPI versions 5

4 Scene Description Files 5
4.1 Basic Scene Requirements . 5
4.2 The Camera . 7
4.3 Including Files . 8
4.4 Scene File Comments . 8
4.5 Lights . 8
4.6 Objects . 9

4.6.1 Spheres . 9
4.6.2 Triangles . 9
4.6.3 Smoothed Triangles 10
4.6.4 Infinite Planes . 10
4.6.5 Rings . 11
4.6.6 Infinite Cylinders . 11
4.6.7 Finite Cylinders . 11
4.6.8 Axis Aligned Boxes . 12
4.6.9 Fractal Landscapes . 12
4.6.10 Arbitrary Quadric Surfaces 13
4.6.11 Volume Rendered Scalar Voxels 13

Index 14

2

1 Introduction

At the present time, Tachyon and its scene description grammar are ex-
tremely primitive, this will be remedied as time passes. For now I’m going
to skip the ”Intro to Raytracing” and related things that should probably
go here, I’ll put them in later. This document is currently designed to serve
the needs of sophisticated users. If you have suggestions, I’ll be glad to get
to them.

Until this document is finished, the best way to learn how Tachyon works
is to examine some of the sample scenes that I’ve included in the Tachyon
distribution. Although they are all very simple, each of the scenes tries to
show something slightly different Tachyoncan do. Since Tachyon is rapidly
changing to accomodate new rendering primitives and speed optimizations,
the scene description language is likely to change to some degree as well.
The scene desciption language used is extremely simple.

1.1 Tachyon Feature List

Although Tachyon is a relatively simple renderer, it does have enough fea-
tures that they bear some discussion.

• Parallel execution using MPI.

• Parallel execution using POSIX or Unix-International threads libraries.

• Automatic grid-based spatial decomposition scheme for greatly in-
creased rendering speeds.

• Simple antialiasing based on psuedo-random supersampling

• Provides many useful geometric objects including Spheres, Planes, Tri-
angles, Cylinders, Quadrics, and Rings

• Texture mapping

• Supports rendering of volumetric data sets

2 Compiling Tachyon From Source Code

In order to use Tachyon you may need to compile it from source code, since
it is normally distributed in source code form. Building Tachyon binaries is
a fairly straightforward process. Download the Tachyon distribution from

3

the web/ftp server. Once you have downloaded the distribution, unpack
the distribution using gunzip and tar. Once the distribution is unpacked,
cd into the ’tachyon’ directory, and then into the ’unix’ directory. Once in
the ’unix’ directory, type ’make’ to see the list of configurations that are
currently supported.

johns:/disk5/users/johns/graphics % gunzip tachyon.tar.gz
johns:/disk5/users/johns/graphics % tar -xvf tachyon.tar.gz
johns:/disk5/users/johns/graphics % cd tachyon
johns:/disk5/users/johns/graphics/tachyon % cd unix
johns:/disk5/users/johns/graphics/tachyon/unix % make

Choose one of the architectures specified below.

Parallel Versions

paragon-thr-mpi - Intel Paragon (MPI + Threads + Thread I/O)
paragon-mp-mpi - Intel Paragon (MPI + Threads + Reg I/O)

paragon-mpi - Intel Paragon (MPI)
ipsc860-mpi - Intel iPSC/860 (MPI)

sp2-mpi - IBM SP2 (MPI)
solaris-mpi - Sun Solaris 2.x (MPI)
irix5-mpi - SGI Irix 5.x (MPI)

solaris-thr - Sun Solaris 2.x Threads
solaris-c4-thr - Sun Solaris 2.x Threads (Sun C 4.x)

Sequential Versions

solaris-v9 - Sun Solaris 2.5 (Sun C 4.x)
solaris-c4 - Sun Solaris 2.[345] (Sun C 4.x)
solaris-c3 - Sun Solaris 2.[345] (Sun C 3.x)

sunos4 - SunOS 4.1.x
irix5 - SGI Irix 5.x (32 bit, R4000)
irix6 - SGI Irix 6.x (64 bit, R8000)

aix - IBM AIX 3.x (Generic RS/6000)
aix-ppc - IBM AIX 3.x (PPC 601)

hpux - HP/UX 9.x and 10.x
linux - Linux (on a little endian machine

bsd - BSD (on a little endian machine

clean - Remove .o .a and executables

4

Type: ’make arch’ to build for an architecture listed above.

johns:/disk5/users/johns/graphics/ray/unix % make solaris-thr

[lots of make output ommitted]

Hopefully once you’ve run ’make’ to build the ray tracer for your ma-
chine, everything went well and you now have a binary to run. If you
are building an MPI version, you may need to edit the make-config file
to edit the locations of libraries and header files as they are listed there.
If you have trouble, for now the best way to go is to send me email, at
johns@megapixel.com As I have time I’ll improve this document and give
more detailed instructions on building.

3 Running Tachyon

Since Tachyon runs on a wide variety of platforms, the exact commands
required to run it vary substantially. The easiest way to get started using
Tachyon is to try running one of the non-parallel, uniprocessor versions first.

3.1 Command line parameters

• -fullshade this option enables the highest quality rendering mode

3.2 Tips for running MPI versions

4 Scene Description Files

At the present time, scene description files are very simple. The parser can’t
handle multiple file scene descriptions, although they may be added in the
future. Most of the objects and their scene description are closely related
to the raytracing engine’s API (See the API docs for additional info).

4.1 Basic Scene Requirements

Unlike some other raytracers out there, Tachyonrequires that you specify
most of the scene parameters in the scene description file itself. If users
would rather specify some of these parameters at the command line, then

5

I may add that feature in the future. A scene description file contains
keywords, and values associated or grouped with a keyword. All keywords
can be in caps, lower case, or mixed case for the convenience of the user.
All values are either character strings, or floating point numbers. In some
cases, the presence of one keyword will require additional keyword / value
pairs.

At the moment there are several keywords with values, that must ap-
pear in every scene description file. Every scene description file must be-
gin with the BEGIN SCENE keyword, and end with the END SCENE
keyword. All definitions and declarations of any kind must be inside the
BEGIN SCENE, END SCENE pair. The next keyword required after
BEGIN SCENE is OUTFILE. The OUTFILE keyword precedes the
name of the output file. The only output file format currently implemented
is Targa 24. Targa files can be read by most image viewers and converters.
Following the OUTFILE keyword and filename is the output file resolution.
The RESOLUTION keyword is followed by an x resolution and a y reso-
lution in terms of pixels on each axis. There are currently no limits placed
on the resolution of an output image other than the computer’s available
memory and reasonable execution time. The last keyword in the head of a
scene description is the VERBOSE keyword. The VERBOSE keyword
is followed by an integer value indicating how much information should be
printed while the raytracer is rendering the scene. At the present time, the
VERBOSE is either zero or nonzero, with zero meaning no extra message,
and nonzero printing full diagnostic messages. An example of a simple scene
description skeleton is show below:

BEGIN_SCENE
OUTFILE myimage.tga
RESOLUTION 1024 1024
VERBOSE 0

...

... Camera definition..

...

... Other objects, etc..

...

END_SCENE

6

4.2 The Camera

One of the most important parts of any scene, is the camera position and
orientation. Having a good angle on a scene can make the difference between
an average looking scene and a strikingly interesting one. There are seven
parameters that control the camera in this raytracer, ZOOM, ASPEC-
TRATIO, ANTIALIASING, CENTER, RAYDEPTH, VIEWDIR,
and UPDIR. The first and last keywords required in the definition of a
camera are the CAMERA and END CAMERA keywords. The remain-
ing camera keywords are all required, and must be written in the sequence
they are listed below, and as shown in the example.

The ZOOM parameter controls the camera in a way similar to a tele-
photo lens on a standard camera. A zoom value of 1.0 is standard, with a 90
degree field of view. By changing the zoom factor to 2.0, the relative size of
any feature in the frame is twice as big, while the field of view is decreased
slightly. The zoom effect is implemented as a scaling factor on the height
and width of the image plane relative to the world.

The ASPECRATIO parameter controls the aspect ratio of the result-
ing image. By using the aspect ratio parameter, one can produce images
which look correct on any screen. Aspect ratio alters the relative width of
the image plane, while keeping the height of the image plane constant. In
general, most workstation displays have an aspect ratio of 1.0. To see what
aspect ratio your display has, you can render a simple sphere, at a resolution
of 512x512 and measure the ratio of its width to its height.

The ANTIALIASING parameter controls the maximum level of su-
persampling used to obtain higher image quality. The parameter given sets
the number of additional rays to trace per-pixel to attain higher image qual-
ity.

The RAYDEPTH parameter tells the raytracer what the maximum
level of reflections, refractions, or in general the maximum recursion depth
to trace rays to. A value between 4 and 12 is usually good. A value of 1
will disable rendering of reflective or transmissive objects (they’ll be black).

The remaining three camera parameters are the most important, because
they define the coordinate system of the camera, and its position in the
scene. The CENTER parameter is an X, Y, Z coordinate defining the
center of the camera (also known as the Center of Projection). Once you
have determined where the camera will be placed in the scene, you need to
tell the raytracer what the camera should be looking at. The VIEWDIR
parameter is a vector indicating the direction the camera is facing. It may
be useful for me to add a ”Look At” type keyword in the future to make

7

camera aiming easier. If people want or need the ”Look At” style camera,
let me know. The last parameter needed to completely define a camera is
the ”up” direction. The UPDIR parameter is a vector which points in
the direction of the ”sky”. I wrote the camera so that VIEWDIR and
UPDIR don’t have to be perpendicular, and there shouldn’t be a need for
a ”right” vector although some other raytracers require it. Here’s a snippet
of a camera definition:

CAMERA
ZOOM 1.0
ASPECTRATIO 1.0
ANTIALIASING 0
RAYDEPTH 12
CENTER 0.0 0.0 2.0
VIEWDIR 0 0 -1
UPDIR 0 1 0

END_CAMERA

4.3 Including Files

The INCLUDE keyword is used anywhere after the camera description,
and is immediately followed by a valid filename, for a file containing ad-
ditional scene description information. The included file is opened, and
processing continues as if it were part of the current file, until the end of the
included file is reached. Parsing of the current file continues from where it
left off prior to the included file.

4.4 Scene File Comments

The # keyword is used anywhere after the camera description, and will
cause Tachyon to ignore all characters from the # to the end of the input
line. The # character must be surrounded by whitespace in order to be
recognized. A sequence such as ### will not be recognized as a comment.

4.5 Lights

In the initial versions of Tachyon the only type of lights available are point
lights. The lights are actually small spheres, which are visible. If users would
like more advanced lighting such as spot lights with falloff and other features,
let me know. A light is composed of three pieces of information, a center,
a radius (since its a sphere), and a color. To define a light, simply write

8

the LIGHT keyword, followed by its CENTER (a X, Y, Z coordinate), its
RAD (radius, a scalar), and its COLOR (a Red Green Blue triple) For a
light, the color values range from 0.0 to 1.0, any values outside this range
may yield unpredictable results. A simple light definition looks like this:

LIGHT CENTER 4.0 3.0 2.0
RAD 0.2
COLOR 0.5 0.5 0.5

This light would be gray colored if seen directly, and would be 50% intensity
in each RGB color component.

4.6 Objects

4.6.1 Spheres

Spheres are the simplest object supported by the raytracer, and they are
also the fastest object to render. Spheres are defined as one would expect,
with a CENTER, RAD (radius), and a texture. The texture may be
defined along with the object as discussed earlier, or it may be declared
and assigned a name. Here’s a sphere definition using a previously defined
”NitrogenAtom” texture:

SPHERE CENTER 26.4 27.4 -2.4 RAD 1.0 NitrogenAtom

A sphere with an inline texture definition is declared like this:

Sphere center 1.0 0.0 10.0
Rad 1.0

Texture Ambient 0.2 Diffuse 0.8 Specular 0.0 Opacity 1.0
Color 1.0 0.0 0.5
TexFunc 0

Notice that in this example I used mixed case for the keywords, this is
allowable... Review the section on textures if the texture definitions are
confusing.

4.6.2 Triangles

Triangles are also fairly simple objects, constructed by listing the three ver-
tices of the triangle, and its texture. The order of the vertices isn’t impor-
tant, the triangle object is ”double sided”, so the surface normal is always
pointing back in the direction of the incident ray. The triangle vertices are
listed as V1, V2, and V3 each one is an X, Y, Z coordinate. An example
of a triangle is shown below:

9

TRI
V0 0.0 -4.0 12.0
V1 4.0 -4.0 8.0
V2 -4.0 -4.0 8.0
TEXTURE

AMBIENT 0.1 DIFFUSE 0.2 SPECULAR 0.7 OPACITY 1.0
COLOR 1.0 1.0 1.0
TEXFUNC 0

4.6.3 Smoothed Triangles

Smoothed triangles are just like regular triangles, except that the surface
normal for each of the three vertexes is used to determine the surface normal
across the triangle by linear interpolation. Smoothed triangles yield curved
looking objects and have nice reflections.

STRI
V0 1.4 0.0 2.4
V1 1.35 -0.37 2.4
V2 1.36 -0.32 2.45
N0 -0.9 -0.0 -0.4
N1 -0.8 0.23 -0.4
N2 -0.9 0.27 -0.15
TEXTURE

AMBIENT 0.1 DIFFUSE 0.2 SPECULAR 0.7 OPACITY 1.0
COLOR 1.0 1.0 1.0
TEXFUNC 0

4.6.4 Infinite Planes

Useful for things like desert floors, backgrounds, skies etc, the infinite plane
is pretty easy to use. An infinite plane only consists of two pieces of infor-
mation, the CENTER of the plane, and a NORMAL to the plane. The
center of the plane is just any point on the plane such that the point com-
bined with the surface normal define the equation for the plane. As with
triangles, planes are double sided. Here is an example of an infinite plane:

PLANE
CENTER 0.0 -5.0 0.0
NORMAL 0.0 1.0 0.0
TEXTURE

10

AMBIENT 0.1 DIFFUSE 0.9 SPECULAR 0.0 OPACITY 1.0
COLOR 1.0 1.0 1.0
TEXFUNC 1
CENTER 0.0 -5.0 0.0
ROTATE 0. 0.0 0.0
SCALE 1.0 1.0 1.0

4.6.5 Rings

Rings are a simple object, they are really a not-so-infinite plane. Rings are
simply an infinite plane cut into a washer shaped ring, infinitely thing just
like a plane. A ring only requires two more pieces of information than an
infinite plane does, an inner and outer radius. Here’s an example of a ring:

Ring
Center 1.0 1.0 1.0
Normal 0.0 1.0 0.0
Inner 1.0
Outer 5.0
MyNewRedTexture

4.6.6 Infinite Cylinders

Infinite cylinders are quite simple. They are defined by a center, an axis,
and a radius. An example of an infinite cylinder is:

Cylinder
Center 0.0 0.0 0.0
Axis 0.0 1.0 0.0
Rad 1.0
SomeRandomTexture

4.6.7 Finite Cylinders

Finite cylinders are almost the same as infinite ones, but the center and
length of the axis determine the extents of the cylinder. The finite cylinder
is also really a shell, it doesn’t have any caps. If you need to close off the
ends of the cylinder, use two ring objects, with the inner radius set to 0.0
and the normal set to be the axis of the cylinder. Finite cylinders are built
this way to enhance speed.

11

FCylinder
Center 0.0 0.0 0.0
Axis 0.0 9.0 0.0
Rad 1.0
SomeRandomTexture

This defines a finite cylinder with radius 1.0, going from 0.0 0.0 0.0, to 0.0
9.0 0.0 along the Y axis. The main difference between an infinite cylinder
and a finite cylinder is in the interpretation of the AXIS parameter. In
the case of the infinite cylinder, the length of the axis vector is ignored. In
the case of the finite cylinder, the axis parameter is used to determine the
length of the overall cylinder.

4.6.8 Axis Aligned Boxes

Axis aligned boxes are fast, but of limited usefulness. As such, I’m not
going to waste much time explaining ’em. An axis aligned box is defined by
a MIN point, and a MAX point. The volume between the min and max
points is the box. Here’s a simple box:

BOX
MIN -1.0 -1.0 -1.0
MAX 1.0 1.0 1.0
Boxtexture1

4.6.9 Fractal Landscapes

Currently fractal landscapes are a built-in function. In the near future
I’ll allow the user to load an image map for use as a heightfield. Fractal
landscapes are currently forced to be axis aligned. Any suggestion on how
to make them more appealing to users is welcome. A fractal landscape is
defined by its ”resolution” which is the number of grid points along each
axis, and by its scale and center. The ”scale” is how large the landscape is
along the X, and Y axes in world coordinates. Here’s a simple landscape:

SCAPE
RES 30 30
SCALE 80.0 80.0
CENTER 0.0 -4.0 20.0
TEXTURE

AMBIENT 0.1 DIFFUSE 0.9 SPECULAR 0.0 OPACITY 1.0

12

COLOR 1.0 1.0 1.0
TEXFUNC 0

The landscape shown above generates a square landscape made of 1,800
triangles. When time permits, the heightfield code will be rewritten to be
more general and to increase rendering speed.

4.6.10 Arbitrary Quadric Surfaces

Docs soon. I need to add these into the parser, must have forgotten before
;-)

4.6.11 Volume Rendered Scalar Voxels

These are a little trickier than the average object :-) These are likely to
change substantially in the very near future so I’m not going to get too
detailed yet. A volume rendered data set is described by its axis aligned
bounding box, and its resolution along each axis. The final parameter is
the voxel data file. If you are seriously interested in messing with these, get
hold of me and I’ll give you more info. Here’s a quick example:

SCALARVOL
MIN -1.0 -1.0 -0.4
MAX 1.0 1.0 0.4
DIM 256 256 100
FILE /cfs/johns/vol/engine.256x256x110
TEXTURE

AMBIENT 1.0 DIFFUSE 0.0 SPECULAR 0.0 OPACITY 8.1
COLOR 1.0 1.0 1.0
TEXFUNC 0

13

Index

camera, 7
antialiasing, 7
aspect ratio, 7
maximum ray depth, 7
orientation, 7
zoom, 7

command line parameters, 5
compiling on unix systems, 3

include files, 8

lights, 8

objects, 9
arbitrary quadrics, 13
axis-aligned boxes, 12
finite cylinders, 11
fractal landscapes, 12
grids of scalar voxels, 13
infinite cylinders, 11
planes, 10
rings, 11
smoothed triangles, 10
spheres, 9
triangles, 9

running, 5
running with MPI, 5

scene description files, 5
scene file comments, 8

14

